

PTV Validate Deutschland

Release R2022_V1.0

PTV Validate Deutschland Inhalt

Inhalt

1	Einleitung					
2	Ermittlung der Daten					
	2.1	Verkehrszellen und Verkehrsnachfrage	4			
	2.2	Straßennetz	4			
	2.3	Attributierung der Strecken	4			
	2.4	Berücksichtigung des europäischen Durchgangsverkehrs	5			
	2.5	Anbindungen der Verkehrszellen	5			
	2.6	Umlegung und Kalibrierung	5			
3	Allge	meine Informationen zum Datensatz	6			
4	Inhalt	Inhalte und Feldbeschreibung				
	4.1	Standard-Spezifikation	7			
	4.2	Weitere Spezifikationen	10			

PTV Validate Deutschland Einleitung

1 Einleitung

Das Verkehrsmengenmodell für Deutschland basiert auf dem von der PTV GmbH entwickelten deutschlandweiten Verkehrsmodell Validate und kann an das Straßennetz der Digital Data Streets gekoppelt werden. Die Daten beruhen auf Modellrechnungen, bei denen in einem ersten Schritt die Verkehrsnachfrage (Fahrten mit Quelle und Ziel von PKW und LKW) aus Strukturdaten abgeleitet wird. In einem zweiten Schritt wird dieser Verkehr mit bewährten Algorithmen auf das Straßennetz verteilt ("umgelegt"). Verfahren dieser Art sind weltweit in der Verkehrsbranche üblich und werden vielfach für die Verkehrsplanung in Bund, Ländern und Gemeinden eingesetzt. Aber allein die Verfügbarkeit von leistungsfähigen Rechnern, hochaufgelösten digitalen Verkehrsnetzen und das in den letzten 15 Jahren von PTV auf diesem Gebiet gewonnene Know-how machen Anwendungen dieser Art heute möglich.

Die durchschnittliche tägliche Verkehrsmenge liegt richtungsbezogen für alle Strecken der Kategorie 1 bis 6 des Straßennetzes aus den Digital Data Streets vor.

Die Verkehrsmengendaten beruhen nicht auf Verkehrszählungen, sondern wurden mit speziellen Algorithmen berechnet und sind daher als Modellwerte zu verstehen. In die Modellrechnung fließen auch Daten wie z. B. Einwohnerzahlen, Arbeitsplatzdaten nach Branche oder Pendlerbewegungen mit ein. Begründet durch die Modellierung kann es in Einzelfällen zu Unplausibilitäten kommen. Im Ausnahmefall treten Segmente auf, bei denen eine Klassifikation nicht durchgeführt werden konnte.

Die Modellwerte sind mit Hilfe zahlreicher Zählstellen validiert worden. Das erfolgte mit

- Zählwerten von mehr als 2.500 offiziellen Dauerzählstellen der Bundesanstalt für Straßenbau (BASt) aus dem Jahre 2019.
- Daten aus zahlreichen Städten und Regionen, die im Rahmen von verschiedenen PTV-Projekten erhoben wurden.

Datenstand:

Das Verkehrsmengenmodell R2022_V1.0 bezieht sich auf das Straßennetz der Digital Data Streets mit der Version R2021_V2.0 und der Validate Version 7.5.

© PTV GmbH Jan/23 Seite 3/12

PTV Validate Deutschland Ermittlung der Daten

2 Ermittlung der Daten

2.1 Verkehrszellen und Verkehrsnachfrage

Um eine sinnvolle Abbildung der Verkehrsströme in Deutschland zu erreichen, muss das Untersuchungsgebiet in sogenannte Verkehrszellen eingeteilt werden. Insgesamt wird mit ca. 20.700 Verkehrszellen gearbeitet, wobei ca. 280 Zellen das europäische Ausland abdecken. Die Verkehrszellen in Deutschland repräsentieren im Schnitt etwa 4.000 Einwohner.

Die Verkehrszellen werden durch ca. 80.000 Marktzellen mit Angaben zu Einwohnern und Betriebsgrößenklassen ergänzt und verfeinert. Die Marktzellen stellen damit eine feinere Aufteilung der Verkehrszellen dar (etwa 8 Marktzellen pro Verkehrszelle) und unterstützen eine lagegenaue, prozentuale Einspeisung des Verkehrs der Verkehrszellen in das Netz.

Aus einer Vielzahl von Datenquellen, wie den amtlich verfügbaren Strukturdaten der Gemeinden und Marktzellen sowie bevölkerunsgruppenspezifischen Verkehrsverhaltensdaten, werden mit Hilfe eines PTV-Verkehrsmodells die Verkehrsströme modellhaft errechnet. Hierbei werden fahrtzwecktypische Reiseweitenverteilungen für die verschieden Fahrtzwecke wie Einkauf, Arbeiten, Urlaubsfahrten etc. berücksichtigt. Durch empirische Daten wie die Pendlerdaten der Bundesagentur für Arbeit, die die Pendlerbeziehungen zwischen allen Gemeinden in Deutschland enthält, wird die Matrix der Verkehrsbeziehungen kalibriert und verbessert.

2.2 Straßennetz

Grundlage für die Netzerstellung bildet das tiefendigitalisierte Navigationsnetz aus den Digital Data Streets, die auf den Straßendaten von HERE (ehemals NAVTEQ) beruhen. Hieraus werden die übergeordneten Straßen ausgewählt, welche die wesentlichen Verkehrsmengen aufnehmen (Straßenkategorie 1-6). Unberücksichtigt bleiben die meisten Nebenstraßen des untergeordneten Verkehrsnetzes, die reinen Erschließungscharakter haben (Kategorie 7 bis 8). Somit entsteht ein Netz mit ca. 6,4 Mio. gerichteter Strecken. Es enthält alle Strecken, auf denen signifikante Verkehrsströme entstehen.

Das Netz ist bundesweit in gleichbleibender Tiefe digitalisiert, kann aber für regionale Anwendungen durch die Ergänzung weiterer Level noch verfeinert werden.

2.3 Attributierung der Strecken

Um eine Modellrechnung auf dem Netz durchführen zu können, müssen die Strecken mit verkehrlichen Daten angereichert werden. Insbesondere müssen die Kapazität und die Geschwindigkeit bei freier Fahrt für alle Strecken bekannt sein. Dazu wird jede Strecke anhand einer Reihe charakteristischer Merkmale (z. B. Geschwindigkeitsbegrenzung, Anzahl Fahrstreifen, Verbindungsfunktion, Bauart) typisiert und entsprechend attributiert.

© PTV GmbH Jan/23 Seite 4/12

PTV Validate Deutschland Ermittlung der Daten

2.4 Berücksichtigung des europäischen Durchgangsverkehrs

Um den Durchgangsverkehr abbilden zu können, wird das Deutschlandnetz an das europäische Netz angebunden. Dieses Netz hat in Grenznähe in etwa die gleiche Auflösung wie das Deutschlandnetz und wird mit zunehmender Entfernung dünner (insgesamt ca. 1,5 Mio. Strecken).

2.5 Anbindungen der Verkehrszellen

Damit die Nachfrage auf dem Netz verteilt werden kann, muss eine Verbindung zwischen den Verkehrszellen und dem Netz hergestellt werden. Diese sogenannten Anbindungen werden unter anderem mit Hilfe der Marktzellen generiert. Das bekannte Verkehrsaufkommen einer Verkehrszelle wird so auf Grund der Bevölkerungszahlen und Arbeitsplätze der einzelnen Marktzellen anteilig in das untergeordnete Netz eingespeist. Hierdurch wird eine feinere, den Quellen und Zielen entsprechende Aufteilung des Verkehrs erreicht.

2.6 Umlegung und Kalibrierung

Die Verkehrsströme der Quelle-Ziel Matrix (Verkehrsnachfrage) werden mit dem Verfahren der Verkehrsumlegung auf das Verkehrsnetz verteilt. D.h. für jede Quelle-Ziel-Beziehung werden unter Berücksichtigung der Verkehrsbelastung die besten Wege gesucht. Diese Verkehrsumlegung wird für LKW und PKW gerechnet. Mit steigender Verkehrsbelastung verändern sich die Reisezeiten auf den verschiedenen Routen, was zu neuer Routenwahl und letztendlich zu einer gleichmäßigen, realistischen Verteilung des Verkehrs im Netz führt. Die Umlegung wird mit der bewährten Software PTV Visum der PTV GmbH durchgeführt. Vorhandene Messdaten von Straßenbelastungen (z. B. offizielle Zähldaten von Dauerzählstellen) werden verwendet, um die berechneten Ergebnisse den real gemessenen anzugleichen. Die hierbei verwendete Kalibrierungsmethodik erlaubt es, auch die real vorkommenden Messfehler und täglichen Schwankungen des Verkehrs bei den Ausgleichsrechnungen zu berücksichtigen.

Im Ergebnis stehen für jede der ca. 5,5 Mio Netzstrecken in Deutschland richtungsbezogene Belastungswerte für den durchschnittlichen Werktag für LKW und PKW.

© PTV GmbH Jan/23 Seite 5/12

3 Allgemeine Informationen zum Datensatz

Name des Produkts: PTV Validate Deutschland

Inhalt des Datensatzes: Durchschnittliche tägliche Verkehrsmenge für das

Überland-Straßennetz aus den PTV Digital Data

Streets Deutschland

Abdeckung: Deutschland

Subset möglich: ja

Quelle: HERE; microm GmbH, Neuss;

PTV Planung Transport Verkehr GmbH, Karlsruhe

Datenart: Sachdaten

Release: R2022_V1.0

Anzahl Datensätze: 2.971.528

Standarddatenformat: MS Access, MapInfo TAB

Sprache: Deutsch

© PTV GmbH Jan/23 Seite 6/12

4 Inhalte und Feldbeschreibung

4.1 Standard-Spezifikation

Spezifikation	Spaltenname	Inhalt	Erläuterung	Datentyp
Standard	ID	Eindeutige Identifikationsnr. für das Objekt	Entspricht der ID aus dem Layer "Strassen" der Digital Data Streets	Integer
Standard	TypHin	Straßentyp in Richtung Von → Nach bezüglich der Knoten. Der Typ steht für die Fahr-geschwindigkeit, die auf der jeweiligen Straße erreicht werden kann, nicht für den tatsächlichen Straßentyp. Beim Typ wird nach 15 Ausprägungen unterschieden.	1 = Autobahn mittel 2 = Autobahn mittel 3 = Autobahn langsam 4 = Bundesstraße schnell 5 = Bundesstraße mittel 6 = Bundesstraße langsam 7 = Landstraße schnell 8 = Landstraße mittel 9 = Landstraße langsam 10 = Stadtstraße schnell 11 = Stadtstraße mittel 12 = Stadtstraße langsam 13 = Fähre 14 = wird nicht vergeben 15 = Sonderfälle wie Zone 30, Zone 10, Fußgängerzonen, Waldwege (häufig sind diese Straßen nicht befahrbar)	Short Integer

© PTV GmbH Jan/23 Seite 7/12

Standard	TypRueck	Straßentyp in Richtung Nach → Von bezüglich der Knoten. Siehe TypHin.	Siehe TypHin.	Short Integer
Standard	Kat	Die Kategorie gibt die Bedeutung der Straße wieder. Je kleiner die Nummer, desto wichtiger die Straße. Die Verkehrsdaten liegen für die Kategorie 1 bis 6 vor, in einigen Fällen auch für andere Kategorien.	Kat 1 = Kategorie 1 (höchste Bedeutung) Kat 2 = Kategorie 2 Kat 3 = Kategorie 3 Kat 4 = Kategorie 4 Kat 5 = Kategorie 5 Kat 6 = Kategorie 6 (niedrigste Bedeutung)	Short Integer
Standard	Von	Anfangsknotenpunkt	Entspricht dem Von- Knoten aus dem Layer "Strassen" der Digital Data Streets	Integer
Standard	Nach	Endknotenpunkt	Entspricht dem Nach- Knoten aus dem Layer "Strassen" der Digital Data Streets	Integer
Standard	kfz_dido_hin	Absolute Verkehrsmenge aller KFZ pro Tag. Richtung Von → Nach	Summe von pkw_dido_hin und lkw_ges_dido_hin	Integer
Standard	pkw_dido_hin	Absolute Verkehrsmenge der PKW pro Tag. Richtung Von → Nach		Integer
Standard	lkw_ges_dido_hin	Absolute Verkehrsmenge aller LKW pro Tag. Richtung Von → Nach		Integer
Standard	lkw_s_dido_hin	Absolute Verkehrsmenge LKW der Klasse S pro Tag. Richtung Von → Nach	S Lkw bis 3,5t	Integer
Standard	lkw_m_dido_hin	Absolute Verkehrsmenge LKW der Klasse M pro Tag. Richtung Von → Nach	M Lkw von 3,5 bis 7,5t	Integer
Standard	lkw_l_dido_hin	Absolute Verkehrsmenge LKW der Klasse L pro Tag. Richtung Von → Nach	L Lkw von 7,5 bis 12t	Integer

© PTV GmbH Jan/23 Seite 8/12

Standard	lkw_xl_dido_hin	Absolute Verkehrsmenge LKW der Klasse XL pro Tag. Richtung Von → Nach	XL Lkw über 12t	Integer
Standard	kfz_dido_rueck	Absolute Verkehrsmenge aller KFZ pro Tag. Richtung Nach → Von	Summe von pkw_dido_rueck und lkw_ges_dido_rueck	Integer
Standard	pkw_dido_rueck	Absolute Verkehrsmenge der PKW pro Tag. Richtung Nach → Von		Integer
Standard	Ikw_ges_dido_rueck	Absolute Verkehrsmenge aller LKW pro Tag. Richtung Nach → Von		Integer
Standard	Ikw_s_dido_rueck	Absolute Verkehrsmenge LKW der Klasse S pro Tag. Richtung Nach → Von	S Lkw bis 3,5t	Integer
Standard	lkw_m_dido_rueck	Absolute Verkehrsmenge LKW der Klasse M pro Tag. Richtung Nach → Von	M Lkw von 3,5 bis 7,5t	Integer
Standard	lkw_l_dido_rueck	Absolute Verkehrsmenge LKW der Klasse L pro Tag. Richtung Nach → Von	L Lkw von 7,5 bis 12t	Integer
Standard	lkw_xl_dido_rueck	Absolute Verkehrsmenge LKW der Klasse XL pro Tag. Richtung Nach → Von	XL Lkw über 12t	Integer

© PTV GmbH Jan/23 Seite 9/12

4.2 Weitere Spezifikationen

Neben der Standard-Spezifikation sind folgende Spezifikationen verfügbar:

Validate Deutschland, Spezifikation

- Tageswerte DiDo (Standard-Spezifikation)
- Durchschnittliche tägliche Verkehrsmenge, 1 Wert je 24h
- 1 Tageskategorie: Di-Do im Durchschnitt
- Tageswerte alle Wochentagstypen
- Durchschnittliche tägliche Verkehrsmenge, 1 Wert je 24h
- 5 Tageskategorien: Mo, Di-Do, Fr, Sa, So
- · Tageswerte und Spitzenstunden DiDo
- Durchschnittliche Verkehrsmenge, 1 Wert je 24h + stündliche Einzelwerte für die Morgen- und Abendspitze (6.00-9.00 Uhr bzw. 16.00 19.00 Uhr)
- 1 Tageskategorie: Di-Do im Durchschnitt
- Tageswerte und Spitzenstunden alle Wochentagstypen
- Durchschnittliche Verkehrsmenge, 1 Wert je 24h + stündliche Einzelwerte für die Morgen- und Abendspitze (6.00-9.00 Uhr bzw. 16.00 19.00 Uhr)
- 5 Tageskategorien: Mo, Di-Do, Fr, Sa, So
- Stundewerte DiDo
- Durchschnittliche Verkehrsmenge, 24 Werte je 24h
- 1 Tageskategorie: Di-Do im Durchschnitt
- Stundenwerte alle Wochentagstypen
- Durchschnittliche Verkehrsmenge, 24 Werte je 24h
- 5 Tageskategorien: Mo, Di-Do, Fr, Sa, So

© PTV GmbH Jan/23 Seite 10/12

Beispiele: Inhalte der Spezifikationen Tageswerte DiDo, Stundenwerte DiDo sowie Tageswerte und Spitzenstunden DiDo im Vergleich

Spezifikation	Spaltenname	Inhalt	Erläuterung	Datentyp
Tageswerte DiDo Stundenwerte DiDo Tageswerte und Spitzenstunden DiDo	ID	Eindeutige Identifikationsnr. für das Objekt	Entspricht der ID aus dem Layer "Strassen" der Digital Data Streets Die IDs haben Duplikate, da je Werte für Hin und Rück angegeben sind.	Integer
Tageswerte DiDo Stundenwerte DiDo Tageswerte und Spitzenstunden DiDo	Von	Anfangsknotenpunkt	Entspricht dem Von-Knoten aus dem Layer "Strassen" der Digital Data Streets	Integer
Tageswerte DiDo Stundenwerte DiDo Tageswerte und Spitzenstunden DiDo	Nach	Endknotenpunkt	Entspricht dem Nach-Knoten aus dem Layer "Strassen" der Digital Data Streets	Integer
Stundenwerte DiDo Tageswerte und Spitzenstunden DiDo	Binnenverkehr	PKW Frequenzen innerhalb eines Bezirks	Anzahl der Verkehrsdichte von PKWs, welche deren Bezirk nicht überschreiten (Ein Bezirk entspricht durchschnittlich ca. 8000 Einwohnern)	Integer
Tageswerte DiDo Stundenwerte DiDo Tageswerte und Spitzenstunden DiDo	PKW_DiDo_24h	PKW Verkehrsbelastung werktags (Dienstag- Donnerstag) Schnitt	Durchschnittliche Verkehrsdichte PKW an einem Werktag	Integer
Tageswerte DiDo Stundenwerte DiDo Tageswerte und Spitzenstunden DiDo	LKW_DiDo_24h	LKW Verkehrsbelastung werktags (Dienstag- Donnerstag) Schnitt	Durchschnittliche Verkehrsdichte LKW an einem Werktag	Integer

© PTV GmbH Jan/23 Seite 11/12

Tageswerte und Spitzenstunden DiDo	PKW_DiDo_h6-8	PKW Verkehrsbelastung werktags (Dienstag- Donnerstag 6-8 Uhr morgens	Anzahl Verkehrsdichte PKW an einem Werktag (Dienstag- Donnerstag) je um 6, 7 und 8 Uhr	Integer
Tageswerte und Spitzenstunden DiDo	PKW_DiDo_h16-18	PKW Verkehrsbelastung werktags (Dienstag- Donnerstag) 16-18 Uhr abends	Anzahl Verkehrsdichte PKW an einem Werktag (Dienstag- Donnerstag) je um 16, 17 und 18 Uhr	Integer
Tageswerte und Spitzenstunden DiDo	LKW_DiDo_h6-8	LKW Verkehrsbelastung werktags (Dienstag- Donnerstag 6-8 Uhr morgens	Anzahl Verkehrsdichte LKW an einem Werktag (Dienstag- Donnerstag) je um 6, 7 und 8 Uhr	Integer
Tageswerte und Spitzenstunden DiDo	LKW_DiDo_h16-18	LKW Verkehrsbelastung werktags (Dienstag- Donnerstag) 16-18 Uhr abends	Anzahl Verkehrsdichte LKW an einem Werktag (Dienstag- Donnerstag) je um 16, 17 und 18 Uhr	Integer
• Stundenwerte DiDo	PKW_DiDo_h0 - PKW_DiDo_h23	PKW Verkehrsbelastung Dienstags- Donnerstags im 24 Stunden Zyklus	24 Spalten mit Anzahl Verkehrsdichte PKW pro Stunde an einem Werktag (24 Spalten)	Integer
• Stundenwerte DiDo	LKW_DiDo_h0 - LKW_DiDo_h23	LKW Verkehrsbelastung Dienstags- Donnerstags im 24 Stunden Zyklus	Anzahl Verkehrsdichte LKW pro Stunde an einem Werktag (24 Spalten)	Integer

© PTV GmbH Jan/23 Seite 12/12